Idefix insulator activity can be modulated by nearby regulatory elements

نویسندگان

  • E. Brasset
  • F. Bantignies
  • F. Court
  • S. Cheresiz
  • C. Conte
  • C. Vaury
چکیده

Insulators play important roles in controlling gene activity and maintaining regulatory independence between neighbouring genes. In this article, we show that the enhancer-blocking activity of the insulator present within the LTR retrotransposon Idefix can be abolished if two copies of the region containing the insulator--specifically, the long terminal repeat (LTR)--are fused to the retrotransposon's 5' untranslated region (5' UTR). The presence of this combination of two [LTR-5' UTR] modules is a prerequisite for the loss of enhancer-blocking activity. We further show that the 5' UTR causes flanking genomic sequences to be displaced to the nuclear periphery, which is not observed when two insulators are present by themselves. This study thus provides a functional link between insulators and independent genomic modules, which may cooperate to allow the specific regulation of defined genomic loci via nuclear repositioning. It further illustrates the complexity of genomic regulation within a chromatic environment with multiple functional elements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paused Pol II captures enhancer activity and acts as a potent insulator.

Enhancers act over many kilobase pairs to activate target promoters, but their activity is constrained by insulator elements that prevent indiscriminate activation of nearby genes. In the July 1, 2009, issue of Genes & Development, Chopra and colleagues (pp. 1505-1509) report that promoters containing a stalled Pol II are activated by enhancers, but these promoters also serve as insulators that...

متن کامل

Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites.

Conserved noncoding elements (CNEs) constitute the majority of sequences under purifying selection in the human genome, yet their function remains largely unknown. Experimental evidence suggests that many of these elements play regulatory roles, but little is known about regulatory motifs contained within them. Here we describe a systematic approach to discover and characterize regulatory motif...

متن کامل

Elba, a novel developmentally regulated chromatin boundary factor is a hetero-tripartite DNA binding complex

Chromatin boundaries subdivide eukaryotic chromosomes into functionally autonomous domains of genetic activity. This subdivision insulates genes and/or regulatory elements within a domain from promiscuous interactions with nearby domains. While it was previously assumed that the chromosomal domain landscape is fixed, there is now growing evidence that the landscape may be subject to tissue and ...

متن کامل

Chromatin insulators: regulatory mechanisms and epigenetic inheritance.

Enhancer-blocking insulators are DNA elements that disrupt the communication between a regulatory sequence, such as an enhancer or a silencer, and a promoter. Insulators participate in both transcriptional regulation and global nuclear organization, two features of chromatin that are thought to be maintained from one generation to the next through epigenetic mechanisms. Furthermore, there are m...

متن کامل

Evolutionary conserved sequences are required for the insulation of the vertebrate Hoxd complex in neural cells.

Transcriptional regulation of vertebrate Hox genes involves enhancer sequences located either inside or outside the gene clusters. In the mouse Hoxd complex, for example, series of contiguous genes are coordinately controlled by regulatory sequences located at remote distances. However, in different cellular contexts, Hox genes may have to be insulated from undesirable external regulatory influ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007